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In this paper we study the surface spline which minimizes the Dirichlet Integral
over a two-dimensional bounded domain, among all non-negative functions

satisfying a finite number of volume-matching constraints. Existence and uniqueness
of this surface spline are proved. A characterization by a variational inequality is
given, revealing local and boundary behaviour of the surface spline, This charac­
terization is of importance in the construction of numerical algorithms for the
production of non-negative smooth surfaces from aggregated data. (19X7 AcademiC

Press, Inc

1. INTRODUCTION

In this paper we study the surface spline defined as the solution of the
variational problem:

minimizeJj(u)= f (u~+u:)dxdy
liE 1I 1(Q) Q

( la)
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subject to:
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i= I,..., s,

a.e. in Q,

(I b)

where Q is a smooth bounded region in R 2
, IEL 2(Q), i= I, ..., s, and

H'(Q) is the (first Sobolev) space of functions, which together with their
first-order distributional derivatives belong to L 2(Q).

This variational approach provides a method for the production of
smooth non-negative surfaces fitting a set of aggregated data of the type
(1 b), and, in particular, for the estimation of a density from its given
volumes

f U=(J.i,
Q,

i= I, ... , s, (1b)'

over a partition Q 1 ,••• , Q,. of the domain Q (Tobler [lOJ).
The variational approach to the interpolation of function values given on

a set of scattered points is well established for Q = R2 (See, e.g., Duchon
[3J and Meinguet [9J). The required surface fits the data and minimizes a
roughness criterion of the form

f m (m)( omu )2
Jm(U) = Q i~O i OXi ym-i ' m~2,

which is rotation invariant.
The same approach in case of aggregated data is studied in Dyn and

Wahba [4J and Wahba [12]. For this type of data the roughness criterion
J I (u) can also be considered and provides the surface spline of lowest
order. In the present work we impose the additional constraint of the
positivity of the surface and investigate the solution of the resulting
variational problem (1), or (1) with J I replaced by Jm , m~2.

The surface spline solving (1) (denoted hereafter by SS( 1)), generalizes
the notion of the univariate shape preserving algebraic spline defined by an
analogous variational problem (See, e.g., Laurent [8 J and Utreras [11 J).

It is worth noting that problem (1), without the linear constraints (1 b)
(which provide the main information about the estimated function), and
for H'(Q) replaced by H~(Q) is the well-known stationary obstacle problem
in mechanics (Glowinski [6J).

I In case Q is a bounded domain, the non-negativity almost everywhere in (Ic) is equivalent
to the non-negativity in Q in the sense of H'(Q) (u""O in Q in the sense of H'(Q)), if
3{~n) c C1(Q). ~n"" 0 in Q, such that ~n -'> ~ in H'(Q). (See, e.g., Kinderlehrer and Stam­
pacchia [7].)
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In the following, we limit the discussion to sets of constraints (1 b)
satisfied by at least one smooth non-negative function. This is always the
case for constraints of the form (1 b)' with ':I. j > 0, i = 1,..., s.

In Section 2, we give a simple existence and uniqueness proof for the
solution of (1). Using results from optimization theory in Banach spaces,
we give in Section 3 a characterization of the SS( 1) in terms of a
variational inequality. In Section 4, we combine the results of Section 2 and
Section 3 with a theorem of Brezis [2J to study local properties of the
SS( 1). In particular the SS( 1) is found to be continuous and therefore non­
negative everywhere in Q, two properties which are essential for
applications.

These characterizations of the solution to (I) are of crucial importance in
the construction of numerical procedures for the computation of the
solution, and in establishing their convergence rates (Wong [13J). The
analogous characterizations of the solution to the obstacle problem
(1 a) + (1 c) are the basis to several numerical procedures for the com­
putation of this solution (see Glowinski [6J for a review of these methods).

We conclude by considering in Section 5 surface splines of higher order
defined by similar minimization problems to (I), but with the functional in
( I a) replaced by J,.,( u).

The results obtained are analogous to those for the case m = I, with the
exception of the local and boundary behaviour deduced from Brezis's result
for m = I.

This problem with m ~ 2 is of interest in the production of highly smooth
positive surfaces fitting given aggregated data.

2. EXISTENCE AND UNIQUENESS

THEOREM 1. There exists a unique solution to problem (1) whenever
L;~ IOQ t;)" > O.

Proof Without loss of generality assume SQ fl = G1,,",0, and let
U= u - I/G 1 ':1. 1 , Then (l) is equivalent to

. J( -) J _0 -)min u = u~ + u~
Q

subject to UE H'(Q) = {u E H'(Q) I IQ ufl = O} and

(2a)

f f
· - G,
·u = ':1..--':1. 1Q' I I G

I

where G, = J fi, i = 2, ..., s
Q

(2b)

a.e. in Q (2c)
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Now functions satisfying (2b) and (2c) are easily seen to form a closed
convex set in FJ'(Q). It is also easy to see that (J1(U))lc is a norm in FJ'(Q).

This norm is in fact equivalent to the Sobolev norm in H'(Q): Ilull c=

J(u) + SQ UC restricted to ii'(Q). To prove this, it is enough to show that if
uEii/(Q), then (fuu)c'ScJdu) for some c>O, since by the classical
inequality of Poincare, there exists constants c l • Cc > () such that for any
l'EH/(Q),

Now let II = U - (I G) JQ u, where Ci = Ji! 1. Then by the above inequality

I Ilc'SC[J[ (1/)=C[.I I (lI)·
<Ii!

On the other hand, since UE FJI(Q), we must have

Thus (2) is the problem of finding the minimum norm clement of a
(nonempty) closed convex set in a Hilbert space, which always has a
unique solution.

1 VARIATIONAL CHARACTERIZAnON

For finite dimensional optimization, the solution is usually characterized
by the famous Karush Kuhn Tucker conditions. There are extensions of
the Kuhn -Tucker theorem to Banach space setting. We will use the
following extension (Girsanov [5]): If Q is a closed convex set in a Banach
space H, and J, Ii I"'" Ii, are Frechet differentiable functions on H, then a
necessary condition for u to minimize J(u) subjected to UE Q,lii(u) = 1."

i = 1, .... .1 is that there exist multipliers /1 ,... , ;.,. such that

(VJ(u)+ I /iVIi,(u))(r-lI)~()
, 1

YrE Q.
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Furthermore, if J is convex, hi' i = I, ... , .I' are linear and there exists u* in
the interior of Q, satisfying hi(u*) ='1" i = I, ... , .1', then the above condition
is also sufficient for UEQ satisfying h,(u)='1" i= 1, ... ,.1' to be the extremal
solution.

To apply the above theorem to our problem, let J(u) = a(u, u) =

Iu II~ + u~, h,(u) = Iu Iu, Q = {u E H'(Q), u ~°a.e. in Q}, and H = H'(Q).
The Frechet derivatives are given by (VJ(II))( L') = 2a( II, r) =

2LJ (u\1'\ + U,l',) and (Vhi(u))(v) = Iu Iv, i = I, ... , s.
By the above result, we obtain the fol1owing characterization of the

solution to (I), for any set of constraints (I b) satisfied by at least one
smooth positive function:

THEOREM 2. u is tlU! solution to (I) it' and only if there exist multipliers
i' l , ... , i, such that

a(u, l'-u)~ I. f(L:-II)
'u

r

I f;1I ='1"
'u

for all v ~ 0, l' E H'(Q)

a.e. inQ

i = I, ... , s.

(3a)

(3b)

(3c)

By wel1-known results (see, e.g., [6J p. 4) we obtain from Theorem 2:

LEMMA 1. Given i. h ... , i' l there is a unique function satish'ing (3a) and
(3b). This function minimizes a(u, u)- IQ(L:; 1 i.,I)u among all non­
negative functions in H'(Q).

4. LOCAL BEHAVIOUR AND BOUNDARY CONDITI01'<S

If in (I), we ignore the equality and inequality constraints, then the
problem becomes a classical calculus of variations problem; the local
behaviour of the solution will then be given by the Euler equation
(vanishing of the first variation) and the natural boundary conditions. In
our problem (I), which is constrained, we expect to get a characterization
of local behaviour similar to the Euler equation in the unconstrained case.
We show that, roughly speaking, when the constraints are not active in a
certain neighbourhood, then the solution SS( I) satisfies a differential
equation 10cal1y in the neighborhood. This kind of local results are in
general very difficult to prove, but our task is simplified considerably by
some existing theorems on variational inequalities.
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LEMMA 2. Given f E e(Q), there exists a UE H 2(Q), which is the unique
solution oj' the following variational inequality:

f (-Au)(v-u);?j' f(v-zl) ffJrall v;?Oa.e.inQ,vEH'(Q), (4.a)
Q f2

u;?° in Q (4b)

au
-=0 a.e. on aQ (4c)
un

where Au = u" + U'I is the Laplacian of u and (au/un) is the normal
derivative at the boundary c'JQ.

Prool This is a special case of Theorem 1.12 in Brezis [2, p. 55], where
we take

fJ(r) 0=0, - 'X! < r < Cf0,

in applying that theorem.
This result is related to the solution of (I) in the following:

LEMMA 3. Let uEH2(Q) satisfy (4). Then u satisfies also (3a).

Prool Since u E H 2(Q), we can use Green's fomula to write

~ ~ , au
j u,Jv-u),+u,(v-u),=j (-Au)(v-u)+J -(v-u).

Q f2 ~~

The second integral in the right-hand side vanishes, because the function
u satisfies the boundary conditions in (4). Therefore

a(u,v-u)= f (-Au)(v-u);? f f(v-u)
Q Q

for all v;? °a.e. in Q, v E H'(Q),

and u satisfies (3a).
Combining the results of Theorem 2 and Lemmas 1-3, we obtain a

differential type necessary and sufficient condition for u to be a solution
of (l).

THEOREM 3. u is the solution to (1) iff the following conditions are
satisfied:

(Sa)
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there exist ), 1 '00" I. s such that u satisfies

r (-Au)(v-u)~ f (± AiI) (v-u)
-Q Q ,~l

for all v ~ 0 a.e. in Q, v E H1(Q)

U ~O in Q

7

(Sb)

(5c)

au
-=0an

J uf;= :J. i ,
Q

on aQ

i = 1'00" s.

(Sd)

(Se)

Prool The sufficiency follows from Lemma 3 and Theorem 2. To prove
the necessity of these conditions assnme U to be the solution of (I ). Then by
Theorem 2, there exist }, 1'00" }" such that u satisfies (3a), and by Lemma 2,
there exists UE H 2(Q) satisfying (Sb), (Sc), (5d), with }'I"'" A, as in (3a).
Hence by Lemma 3 U satisfies (3a) and (3b), which in view of Lemma I
implies that U coincides with u. This completes the proof of the theorem.

Remark. The boundary condition (5d) is the natural condition, as in
the classical variational problems with "free boundary".

Property (Sb) of the solution of (1) is equivalent to the following local
behaviour in the distributional sense (Brezis [2J):

s

(-Au)~ I. A;};
i= I

inQ,
s

(-Au) = I. AiI
i-=-l

III {XEQ:lI(X»O}.

(Sb )'

Moreover since uEH2(Q), AUEe(Q), and (Sb)' holds almost
everywhere in Q. Thus (Sb) in view of (5a) is equivalent to:

.I

-Au- I. }'iI~O
i= 1

a.e. inQ, a.e. inQ.

(Sb)*

5. SURFACE SPLINES OF HIGHER-ORDER

Similar analysis as done for the SS( 1) can be carried over to the surface
spline of order m ~ 2, SS(m), defined as the solution of the variational
problem:

II m (m)( 3
mu )2min Jm (lI) = ..

UE H"'(Q) Q i~O i ax' am 'y
(6a)
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subject to

fut> ex"

u~{)

i= 1, ... , .I

inQ.

(6b)

(6c)

Here Q is a smooth bounded region in RC, IE L 1(Q), i = I, .... s. and Hn/(Q)

is the lJ1'th order Sobolev space

{
I

11k II }
H"1(Ql= .11 0 ·l k .ELC(Q).i=O,...• k,k={), .... m .

(·x l (,l' I

For m ~ 2 all functions in 1In/(Q) are continuous on Q, and the non­
negativity in (6c) is pointwise.

For this problem we obtain analogous results to Theorems I and 2 for
the case m = I. for sets of linear constraints (6b) satisfying the following
two assumptions:

(i) There exists a smooth positive function satisfying (6b).

(ii) There does not exist a polynomial q of total degree k, k < m.
satisfying JQIq=O, i= 1..... s.

For the SS( IJ1 l. existence, uniqueness, and characterization in terms of a
variational inequality are derived by the same arguments used in Sec­
tions 2, 3. We formulate the results and omit the proofs.

THEOREM 4. There exisls a unique solulion 10 problem (6). u is Ihe
sollilion to (6) iff there exist mlillipliers )" I , ... , I., such Ihat

an/(uJ~II)~ r (V-II) I ;'II j()rall['~{),vEH"'(Q) (7a)
"!.! I J

II ~ () in Q (7b )

I Iu='Y." i=1, .... .I. (7c)
• ,2

)\'here

(8)

In order to conclude local and boundary behaviour of the solution to
(6 l. an extension of Brezis's result (Lemma 2) to m ~ 2 is needed. At this
stage the extension of Theorem 3 to m ~ 2 is yet a conjecture:
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Conjecture. U IS the solution to (6) if the following conditions arc
satisfied:

(9a)

there exist ).1 , ... , )., such that u satisfies

(-I)'" I iJ"'U(l'-U)
'0

~L(tl;.,j;)(l'-U) foral1r~O,vEH"'(Q) (9b)

U ~ 0 in Q (9c)

<5 2", iU = 0

r uF = Xi.
'!J

onrlQ,i=I ..... m

i = I,.... S

(9d)

(ge)

where (j2'" i' i = I.... , m are differential operators of order 2m - i defined by
the generalizd Green formula (Aubin [IJ):

," !Jl I ..

a",(u,v)=(-I)"'J (iJ"'u)v+I J (6 2", I
Q I~· () ,"Q

i':'
iU) --;;--c 1'.

on'
(10)

The local behaviour of U in Q implied by (9a) and (9b) is:

(-I)'" iJ"'u ~ I A,f; a.e. in Q
, I

L(-I )'" A"'u- ,tl J.ifJ·u = 0 a.e. in Q.
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